ODSL 8

Dimensioned drawing

A Receiver
B Transmitter
C Optical axis
D 90° turning connector
E LED yellow, green
F Operational control (rotary switch)
G Reference edge for the measurement (optics cover)

Electrical connection

ODSL 8/V66...-500-S12

ODSL 8/66...-500-S12

ODSL 8/C66...-500-S12
$\begin{array}{r}18-30 \mathrm{~V} \mathrm{DC}+-1 \rightarrow) \mathrm{br} / \mathrm{BN} \\ \text { Q2 } \overline{\mathrm{\theta}}\end{array}-2 \rightarrow \mathrm{~ms} / \mathrm{WH}$

Specifications

Optical data

Measurement range 1)
Resolution 2)
Light source
Laser class
Wavelength
Max. output power
Pulse duration
Light spot
$20 \ldots 500 \mathrm{~mm}$
$0.1 \ldots 0.5 \mathrm{~mm}$
laser
2 acc. to IEC 60825-1:2007
650nm (visible red light)
$<1.2 \mathrm{~mW}$
4 ms
$2 \times 6 \mathrm{~mm}^{2}$ at 500 mm

Error limits (relative to measurement distance)

Absolute measurement accuracy 1) $\pm 2 \%$ up to $200 \mathrm{~mm} / \pm 4 \% 200 \ldots 500 \mathrm{~mm}$
Repeatability 3) $\pm 1 \%$ up to $200 \mathrm{~mm} / \pm 3 \% 200 \ldots 500 \mathrm{~mm}$
B/W detection thresh. (6 ... 90% rem.) $\leq 1.5 \%$
Temperature drift

Timing

Measurement time
Response time
Delay before start-up

Electrical data

Operating voltage U_{B}

Residual ripple
Open-circuit current
Switching output/function 4)

Signal voltage high/low
Analog output

Indicators

Green LED continuous light
off
Yellow LED continuous light
flashing
off

Mechanical data

Housing
Optics cover
Weight
Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit 6)
VDE safety class ${ }^{7}$)
Protection class ${ }^{8)}$
Environmentally tested acc. to
Standards applied
Certifications
$\leq 0.2 \% /{ }^{\circ} \mathrm{C}$
$2 \ldots 7 \mathrm{~ms}$
$\leq 20 \mathrm{~ms}$
$\leq 300 \mathrm{~ms}$
without analog output: $10 \ldots$ 30VDC
with analog output: $18 \ldots 30$ VDC
(incl. residual ripple)
$\leq 15 \%$ of U_{B}
$\leq 50 \mathrm{~mA}$
2 push-pull switching outputs
pin 2: Q2, PNP light switching, NPN dark switching
pin 4: Q1, PNP light switching, NPN dark switching
$\geq\left(U_{B}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
voltage $1 \ldots 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ / current $4 \ldots 20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}} 500 \Omega$
ready
fault (teach values were not applied)
no voltage
object within Q1 switching range ${ }^{5)}$
teach values were not applied
object out of Q1 switching range ${ }^{6)}$

metal

glass or plastic
70 g
M12 connector, 5-pin, turning
$-40^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
II, all-insulated
IP 67, IP 69K 9)
ECOLAB
IEC 60947-5-2
UL 508, CSA C22.2 No. 14

1) Luminosity coefficient $6 \% \ldots 90 \%$, at $20^{\circ} \mathrm{C}$, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$
2) Minimum and maximum value depend on measurement distance and configuration of the analog output
3) Same object, identical environmental conditions, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$
4) The push-pull switching outputs must not be connected in parallel
5) No display for output Q2
6) $2=$ polarity reversal protection, $3=$ short circuit protection for all outputs
7) Rating voltage 250 VAC
8) In stop position of the turning connector (turning connector locked)
9) IP 69 K test acc. to DIN 40050 part 9 simulated, high pressure cleaning conditions without the use of additives, acids and bases are not part of the test

Tables

Diagrams

Characteristic curve of switching outputs:
${ }^{+V_{B}}$

A Hysteresis
B Switching point Q1 (teach point)
C Switching point Q2 (teach point)
D Measurement distance

Remarks

Operate in accordance with intended use!
${ }^{\Perp}$ This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{y}{ } \rightarrow$ The product may only be put into operation by competent persons.
${ }^{\leftrightarrows}$ Only use the product in accordance with the intended use.

- Measurement time depends on the reflectivity of the measurement object and on the measurement mode.

ODSL 8

Order guide

Preferred types

1) automatic, distance-dependent adjustment of the switching hysteresis

Types with pre-set parameterization

Order code \rightarrow								
Optics cover								
Glass	\bullet							
Plastic								
Outputs								
Analog output, voltage	\bullet							
Analog output, current								-
2 switching outputs	-	\bullet						
Output factory settings								
Analog output, voltage	$100 \ldots 400 \mathrm{~mm}$	$20 \ldots 500 \mathrm{~mm}$	$210 \ldots 300 \mathrm{~mm}$	$20 . . .300 \mathrm{~mm}$	$300 \ldots 350 \mathrm{~mm}$	$150 \ldots 200 \mathrm{~mm}$	$140 \ldots 190 \mathrm{~mm}$	-
Analog output, current	-	-	-	-	-	-	-	$20 . . .400 \mathrm{~mm}$
Switching output Q1, light switching	$20 \ldots 200 \mathrm{~mm}$, hysteresis 1 mm	$20 . .30 .2 \mathrm{~mm}^{1)}$	$\begin{aligned} & 210 \ldots 240 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm} \end{aligned}$	$20 \ldots 100 \mathrm{~mm}$, hysteresis 1 mm	$\begin{aligned} & 300 \ldots 320 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 150 \ldots 170 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm} \end{aligned}$	$140 \ldots 160 \mathrm{~mm}^{1)}$	$20 . . .250 \mathrm{~mm}^{1)}$
Switching output Q2, light switching	$\begin{aligned} & 20 \ldots 300 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm} \end{aligned}$	$28.8 \ldots 400 \mathrm{~mm}^{1}$)	$\begin{aligned} & 270 \ldots 300 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm}, \end{aligned}$	$\begin{aligned} & 200 \ldots 300 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm}, \end{aligned}$	$\begin{aligned} & 330 \ldots 350 \mathrm{~mm}, \\ & \text { hysteresis } 1 \mathrm{~mm} \end{aligned}$	$180 \ldots 200 \mathrm{~mm}$, hysteresis 1 mm	$170 \ldots 190 \mathrm{~mm}^{1)}$	$20 . . .250 \mathrm{~mm}^{1)}$
Number of measurements for averaging	10	3	10	10	10	10	10	50

1) automatic, distance-dependent adjustment of the switching hysteresis

Laser safety notices

ATTENTION, LASER RADIATION - LASER CLASS 2

Never look directly into the beam!

The device satisfies the requirements of IEC 60825-1:2007 (EN 60825-1:2007) safety regulations for a product in laser class $\mathbf{2}$ as well as the U.S. 21 CFR 1040.10 regulations with deviations corresponding to "Laser Notice No. 50" from June 24th, 2007.
« Never look directly into the laser beam or in the direction of reflecting laser beams!
If you look into the beam path over a longer time period, there is a risk of injury to the retina.
${ }_{4}{ }^{4}$ Do not point the laser beam of the device at persons!
4) Intercept the laser beam with an opaque, non-reflective object if the laser beam is accidentally directed towards a person.
${ }_{4}$ When mounting and aligning the device, avoid reflections of the laser beam off reflective surfaces!
$\stackrel{4}{4}$ CAUTION! Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.
4. Adhere to the applicable legal and local regulations regarding protection from laser beams.
4) The device must not be tampered with and must not be changed in any way.

There are no user-serviceable parts inside the device.
Repairs must only be performed by Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG.

NOTICE

Affix laser information and warning signs!

Laser information and warning signs are affixed to the device (see (1). In addition, self-adhesive laser information and warning signs (stick-on labels) are supplied in several languages (see (2)).
${ }^{4}$) Affix the laser information sheet with the language appropriate for the place of use to the device.
When using the device in the US, use the stick-on label with the "Complies with 21 CFR 1040.10" notice.
4) Affix the laser information and warning signs near the device if no signs are attached to the device (e.g. because the device is too small) or if the attached laser information and warning signs are concealed due to the installation position.
Affix the laser information and warning signs so that they are legible without exposing the reader to the laser radiation of the device or other optical radiation.

ODSL 8

Optical laser distance sensors

Characteristic curve of analog output

Setting of the analog output is type dependent, see order guide!

A Area not defined
B Linearity not defined
C Measurement range
D Object present
E No object detected
F Measurement distance

Installation instructions

Mounting systems are available which have to be ordered separately at Leuze electronic. Apart from this, the drilled-through holes and threaded holes are suitable for the individual mounting of the ODSL 8, depending on the area in which it is used. When mounting, avoid application of excessive force on the housing.

Preferred movement of the objects

Preferred mounting in connection to objects with structured surface

View through a chase

If the ODSL 8 has to be installed behind a cover, the chase has to have at least the size of the optical glass cover. Otherwise, a correct measurement is not possible or can not be guaranteed.

Alignment to measurement objects with reflecting surfaces If the measurement object to be detected has a reflecting surface, a measurement may not be possible depending on the angle in which the light is reflected by the measurement object's surface. Adjust the angle between the sensor and the measurement object such that the sensor can reliably detect the measurement object.

T_{1} teach-in with rotary switch

1.Position measurement object at the desired measurement distance (1).
2. Turn rotary switch into the desired position (Low, High, 1, 2) (2)). Wait for optical confirmation by flashing of the LEDs.

Teach function	Rotary switch position	Green LED	Yellow LED
Analog output 1V/4mA	low	On	Flashes
Analog output 10V/20mA	high	Flashes	On
Switching output Q1	1	Flash synchronously	
Switching output Q2	2	Flash alternatingly	

3. For teaching, position rotary switch onto "Run" (3).

Wait for optical confirmation by end of flashing signal (green LED on).

T_{1} teach-in via input

1. Position measurement object at the desired measurement distance.
2. The respective teach function is activated by applying $+U_{B}$ to teach input (pin 5). The teach event is signaled by flashing of the LEDs.

Teach function	Duration of the teach signal	Green LED	Yellow LED
Switching output Q1	$2 \ldots 4 \mathrm{~s}$	Flash synchronously	
Switching output Q2	$4 \ldots 6 \mathrm{~s}$	Flash alternatingly	

3. To finish the teach event, disconnect the teach input from $+U_{B}$ or switch it to 0 V after the desired time.
4. A successful teach event is signaled by the end of the flashing (green LED on)

Reset of the analog output to factory settings

Reset $1 \mathrm{~V} / 4 \mathrm{~mA}$ analog output at 20 mm :

1. Position measurement object just below start of measurement range (20 mm).
2. Position rotary switch on "Low". Wait for optical confirmation by flashing of the LEDs.
3. For teaching, position rotary switch onto "Run".

Wait for optical confirmation by end of flashing signal (green LED on).

Reset $\mathbf{1 0 V} / \mathbf{2 0 m A}$ analog output at 500 mm :

1. Position measurement object just beyond end of measurement range $(500 \mathrm{~mm})$.
2. Position rotary switch on "High". Wait for optical confirmation by flashing of the LEDs.
3. For teaching, position rotary switch onto "Run".

Wait for optical confirmation by end of flashing signal (green LED on).

Error messages

Continuously flashing LEDs in switch position "Run" signal an unsuccessful teach event (sensor not ready):

Green LED	Yellow LED	Error
Oon	Flashes	Teach 1V/4mA analog output unsuccessful
Flashes	On	Teach 10V/20mA analog output unsuccessful
Flash synchronously	Teach switching output Q1 unsuccessful	
Flash alternatingly	Teach switching output Q1 unsuccessful	

Remedy:

- Repeat teach event or
- Disconnect sensor from voltage to restore the old values.

